亚欧一区,无码丰满熟妇一区二区浪,欧美一级欧美,超碰人人妻

當前位置: > 學術(shù)報告 > 文科 > 正文

文科

From Optimal Transport to the Plateau problem via Liquid crystals

發(fā)布時間:2019-06-24 瀏覽:

報告人: Ha?m Brezis 院士

講座日期:2019-07-05

講座時間:10:00

報告地點:長安校區(qū) 教育博物館主樓學術(shù)報告廳

主辦單位:數(shù)學與信息科學學院

講座人簡介:

Ha?m Brezis院士,主要從事非線性方向和偏微分方程方面的研究。是法國科學院院士、歐洲科學院院士、美國科學院外籍院士等8個國家院士。獲法國佩科特大獎,巴黎科學院卡里埃爾獎,安培大獎等4項大獎。至今指導58位博士生,擁有630多位學術(shù)后裔,其中3位獲得數(shù)學界最高榮譽菲爾茲獎(Fields Medal)獎,至少4位獲院士頭銜。編著專著和書6部,其中《泛函分析》教材是傳世之經(jīng)典。在國際數(shù)學頂尖期刊 Ann Math, Invent. Math., J AMS, Comm. Pure Appl. Math.等發(fā)表學術(shù)論文224篇。更多研究工作可瀏覽Ha?m Brezis 院士主頁http://www.math.rutgers.edu/~brezis/.

講座簡介:

I will discuss two proofs of the celebrated Monge-Kantorovich theorem in discrete Optimal Transport (OT). One of them is extremely elementary, self-contained, and can be understood by beginners. I will then describe an application to Liquid Crystals, which provides an explicit formula for the least energy required to produce a configuration with assigned defects. Next I will present striking connections that we recently discovered with P. Mironescu between OT and least area formulas for the classical Plateau problem.