在线看一区二区,国产精品 久久久久久久,夜夜久久av,重口味一区二区

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 文科 > 正文

文科

Random Hardy Shift

發(fā)布時(shí)間:2018-03-29 瀏覽:

講座題目:Random Hardy Shift

報(bào)告人:方向 教授

主持人:吉國(guó)興 教授

活動(dòng)時(shí)間:15:00

地點(diǎn):長(zhǎng)安校區(qū) 數(shù)學(xué)與信息科學(xué)學(xué)院學(xué)術(shù)交流廳

主辦單位:數(shù)學(xué)與信息科學(xué)學(xué)院

講座內(nèi)容簡(jiǎn)介:

This talk seeks to answer basic questions concerning the random counterpart of the unilateral shift, a.k.a. the Hardy shift. It is well known that, on finite dimensional vector spaces, random matrix theory has evolved into a sophisticated subject. On infinite dimensional spaces, there are some works on random operators, but mostly restricted to the self-adjoint and unbounded case, such as random Schrodinger operators. A random theory for non-self-adjoint operators acting on infinite dimensional spaces is largely missing so far. We seek to develop such a theory by first considering the simplest non-selfadjoint operator: the unilateral shift. It is defined as

$$Te_n=e_{n+1}, \quad n=1, 2, \cdots,$$

where $\{e_n\}_{n=1}^\infty$ is an orthonormal basis for a separable complex Hilbert space. We consider the random counterpart: Namely,

$$Te_n=X_ne_{n+1}, \quad n=1, 2, \cdots,$$

where $\{X_n\}_{n=1}^\infty$ is a sequence of i.i.d. random variables. We propose to study it in parallel to the three well known shfits (Hardy, Bergman, and Dirichlet).

講座人簡(jiǎn)介:

方向,臺(tái)灣中央大學(xué)教授。研究興趣為泛函分析和隨機(jī)分析。

 

呦呦色精品网| 欧美亚洲日韩女优中文另类| 欧美日韩精品wwww| 日韩中文字幕一区二| 精品小黄片| 成人熟女人妻一区二区三区| 久久三级电影免费在| 亚洲熟妇久久国内| 婷婷五月婷婷在线视频| ′亚洲欧美综合一区二区| 天天天日干干夜| 99久久成人日韩欧美精品| 日韩三级激情| 亚洲天堂成人天堂| 日韩精品伦理一区| 日韩欧美国产激情| 亚洲www色欲| 欧美大胆骚逼老湿机| 欧美日韩精品亚洲无码| 欧美成人一级视频免费在线观看| 夜夜嗨av无| 精品岛国一本av久久久久| 无码一区二四区在线观看| 毛片无码一区 二区 三区| 教师无码在线| 三级久久欠久久| 汪清县| 一区三区欧洲| 91色欲麻豆精品一区二区| 日韩不卡欧美高清在线观看| 日韩A三级一区| 色婷婷五月精品综合在线| 国产799在线| 最新精品三级| 91特黄大片| 新AV在线激情| 综合色欲网| 五十六十路熟妇视频| 欧美伦理激情在线一区| 久久婷婷精品影院| 顶级成人在线观看|